If α, β are the roots of the quadratic equation ax2+bx+c=0, γ,δ are the roots of px2+qx+r=0 & D1, D2 be the respective discriminants of these equations. If α,β,γ,& δ are in A.P. then D1:D2=
Where α,β,γ,δ,∈R & a,b,c,p,q,r∈R)
a2:p2
Given α,β are the roots of the equation ax2+bx+c=0
⇒α+β=−ba, αβ=ca
Now, D1=b2−4ac=a2(b2a2−4ca)
=a2((α+β)2−4αβ)
=a2(α−β)2
Also, γ,δ are the roots of the equation px2+qx+r=0
⇒γ+δ=−qp, γδ=rp
D2=q2−4pr=p2(q2p2−4rp)
=p2(γ+δ)2−4γδ
=p2(γ−δ)2
∵α,β,γ,δ are in A.P
∴α−β=γ−δ
∴D1D2=a2p2
Hence, D1:D2=a2:p2