If α,β are the roots of the quadratic equation x2−px+q=0, then (α+β)x−(α2+β2)x22+(α3+β3)x33−…∞=
A
log(1−px+qx2)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
log(1−qx+px2)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
log(1+qx+px2)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
log(1+px+qx2)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is Dlog(1+px+qx2) Here, α+β=p,α.β=q ∴(α+β)x−(α2+β2)x22+(α3+β3)x33−…∞ =(αx−(αx)22+(αx)33−....…∞)+(βx−(βx)22+(βx)33−....…∞) =log(1+αx)+log(1+βx)=log(1+(α+β)x+α.βx2)=log(1+px+qx2)