If α,β are the roots of x2−(a−2)x−(a+1)=0, where ′a′ is a parameter, then the minimum value of α2+β2 is equal to
Open in App
Solution
α,β are the roots of x2−(a−2)x−(a+1)=0 ⇒α+β=a−2,α⋅β=−(a+1)
Let f(a)=α2+β2=(α+β)2−2α⋅β =(a−2)2+2(a+1) ⇒f(a)=a2−2a+6 ⇒f′(a)=2a−2 and f′′(a)=2>0 ∴f(a) has minimum at f′(a)=0 ⇒a=1 fmin(a)=(1)2−2(1)+6=5