α+β=−p,αβ=q,γ+δ=−r,γδ=s
(α−γ)(α−δ)(β−γ)(β−δ)
[α2−α(γ+δ)=γδ][β2−β(γ+δ)+γδ]
(α2+rα+s)(β2+rβ+s)..........(1)
Since α is a root of x2+px+q=0
∴ α2+pα+q=0
or α2=−pα−q and similarly β2=−pβ−q.
Hence from (1) we have to evaluate the value of
(−pα−q+rα+s)(−pβ−q+rβ+s)
=[(r−p)α−(q−s)][(r−p)β−(q−s)]
=(r−p)2αβ−(r−p)(q−s)(α+β)+(q−s)2
=(r−p)2q−(r−p)(q−s)(−p)+(q−s)2
=(r−p)[(qr−pq)+(pq−ps)]+(q−s)2
=(q−s)2−(p−r)(qr−ps).........(2)
In case the equations have a common root then
α=γ or α=δ and in either case
α−γ=0 or α−δ=0
and hence the given expression is zero
Therefore from (2) the required condition is
(q−s)2=(p−r)(qr−ps).