The correct option is
D 8Given:
α,β are roots of equation
x2+x+1=0, and
γ,δ are the roots of equation
x2+3x+1=0To find the value of (α−γ)(β+δ)(α+δ)(β−γ)
Sol: α,β are roots of equation x2+x+1=0
Hence, α+β=−1,αβ=1.............(i)
γ,δ are the roots of equation x2+3x+1=0
Hence γ+δ=−3,γδ=1.........(ii)
(α−γ)(β+δ)(α+δ)(β−γ)⟹=[α(β+δ)−γ(β+δ)][α(β−γ)+δ(β−γ)]⟹=(αβ+αδ−γβ−γδ)(αβ−αγ+βδ−δγ)
⟹=(1+αδ−γβ−1)(1−αγ+δβ−1) [using (i) and (ii)]
⟹=(αδ−γβ)(δβ−αγ)⟹=αδ(δβ−αγ)−γβ(δβ−αγ)⟹=(αβ)(δ)2−(γδ)(α)2−(γδ)(β)2+(αβ)(γ)2
Substitute αβ=1,γδ=1, we get
⟹=(δ2+γ2)−(α2+β2)
Use formula (a2+b2)=(a+b)2−2ab
⟹=(γ+δ)2−2γδ−[(α+β)2−2αβ]
Substitute values of equation (i) and (ii), we get
⟹=(−3)2−2(1)−[(−1)2−2(1)]⟹=9−2−1+2⟹=8
Therefore (α−γ)(β+δ)(α+δ)(β−γ)=8