Given,
6cosθ+8sinθ=9
Now,
6cosθ=9−8sinθ
On squaring both sides, we get
(6cosθ)2=(9−8sinθ)2
100sin2θ+144sinθ+45=0
Since,
αandβ are different roots.
Product of roots
sinα.sinβ=45100 ………. (1)
Taking again,
6cosθ+8sinθ=9
8sinθ=9−6cosθ
On squaring both sides, we get
64(1−cos2θ)=81+36cos2θ−108
64sin2θ=81+36cos2θ−108
100cos2θ−108cosθ+17=0
Product of roots cosα.cosβ=17100 ……… (2)
From equation (1) and (2), we have
cosαcosβ−sinαsinβ=17100−45100=−−7100
cos(α+β)=−725
Hence, this is required answer.