The correct option is C (q2−p2)
x2+px+1=0
Sum and product of roots,
α+β=−p, αβ=1
x2+qx+1=0
Sum and product of roots,
γ+δ=−q, γδ=1
Now,
(α−γ)(β−γ)(α+δ)(β+δ)=[αβ−γ(α+β)+γ2][αβ+δ(α+β)+δ2]=[1+γp+γ2][1−qδ+δ2]
We know that,
x2+qx+1=0 has roots as γ,δ
So,
(α−γ)(β−γ)(α+δ)(β+δ)=[(γ2+1)+γp][(δ2+1)−pδ)]=(−qγ+γp)(−qδ−pδ)=γδ(q2−p2)=(q2−p2)