If α,β be the roots of ax2+bx+c=0 and γ,δ those of lx2+mx+n=0, then the equation whose roots are αγ+βδ and αδ+βγ is
A
alx2−mbx+cm2l+nb2a−4cn=0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
alx2+mbx+cm2l+nb2a−4cn=0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
alx2−mbx+cm2l+nb2a+4cn=0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
alx2+mbx+cm2l+nb2a+4cn=0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Aalx2−mbx+cm2l+nb2a−4cn=0 ax2+bx+c=0 α+β=−ba,αβ=ca lx2+mx+n=0 γ+δ=−ml,γδ=nl
The roots are αγ+βδ and αδ+βγ, then Sum and product of the roots is, S=αγ+βδ+αδ+βγ=(α+β)(γ+δ)=mbal P=(αγ+βδ)(αδ+βγ)=α2γδ+αβδ2+αβγ2+β2γδ=γδ(α2+β2)+αβ(γ2+δ2)=nl×(b2−2aca2)+ca(m2−2lnl2)=1al[nb2a+cm2l−4cn]
Therefore, the required equation is, x2−Sx+P=0∴alx2−mbx+cm2l+nb2a−4cn=0