If α,β be the roots of the equation
2x2−2(m2+1)x+(m4+m2+1)=0
then (α2+β2)=
m2
Given:2x2−2(m2+1)x+(m4+m2+1)=0
α+β=2(m2+1)2=m2+1 ......(i)
and α.β=m4+m2+12 .....(ii)
Using α2+β2 = (α+β)2−2αβ
From (i) and (ii),
⇒α2+β2=(m2+1)2−2(m4+m2+1)2
⇒α2+β2=m4+2m2+1−m4−m2−1=m2