If α,β be the roots of the equation 3cos2θ+4sin2θ=5, then match the following from List I to List II.
List IList II (A)tanα+tanβ(P)0(B)tan(α+β)(Q)43(C)tan(α−β)(R)14(D)tanαtanβ(S)1
A
(A)→(P)(B)→(Q)(C)→(R)(D)→(S)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
(A)→(P)(B)→(R)(C)→(Q)(D)→(S)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
(A)→(Q)(B)→(P)(C)→(S)(D)→(R)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
(A)→(S)(B)→(Q)(C)→(P)(D)→(R)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is D(A)→(S)(B)→(Q)(C)→(P)(D)→(R) We know that α,β are the roots of 3cos2θ+4sin2θ=5⇒3(1−tan2θ1+tan2θ)+4(2tanθ1+tan2θ)=5⇒3−3tan2θ+8tanθ1+tan2θ=5⇒3−3tan2θ+8tanθ=5+5tan2θ⇒4tan2θ−4tanθ+1=0⋯(1)
The roots of equation (1) is tanα,tanβ,
Now, ⇒(2tanθ−1)2=0∴tanα=tanβ=12
Now, tanα+tanβ=1tanαtanβ=14tan(α−β)=0tan(α+β)=tanα+tanβ1−tanαtanβ=43
Therefore, (A)→(S)(B)→(Q)(C)→(P)(D)→(R)