If α,β be the roots of the equation ax2+bx+c=0. Let Sn=αn+βn, for n≥1
If Δ=∣∣
∣∣31+S11+S21+S11+S21+S31+S21+S31+S4∣∣
∣∣, then Δ is equal to
A
s2(b2−4ac)a4
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
(a+b+c)2(b2−4ac)a4
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
b2−4aca4
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
(a+b+c)24
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is B(a+b+c)2(b2−4ac)a4 We have α,β are the roots of ax2+bx+c=0, then α+β=−ba,αβ=ca ∴Sn=αn+βn ∴Δ=∣∣
∣∣31+S11+S21+S11+S21+S31+S21+S31+S4∣∣
∣∣ =∣∣
∣
∣∣31+α+β1+α2+β21+α+β1+α2+β21+α3+β31+α2+β21+α3+β31+α4+β4∣∣
∣
∣∣ =∣∣
∣∣1111αβ1α2β2∣∣
∣∣×∣∣
∣∣1111αβ1α2β2∣∣
∣∣ =∣∣
∣∣1111αβ1α2β2∣∣
∣∣2 ={αβ−(α+β)+1}2{(α+β)2−4αβ}=(ca+ba+1)2(b2a2−4ca)=(a+b+c)2(b2−4ac)a4