If α,β be the roots of x2+x+2=0 and γ,δ be the roots of x2+3x+4=0, then (α+γ)(α+δ)(β+γ)(β+δ) is equal to
α+β=−1,αβ=2,γ+δ=−3,γδ=4
Now, (α+γ)(α+δ)(β+γ)(β+δ)
=(α2+(−3)α+4)(β2−3β+4)
=(−α−2−3α+4)(−β−2−3β+4)
=(−4α+2)(−4β+2)
=4(2α−1)(2β−1)
=4(4αβ−2α−2β+1)
=4(8+2+1)=44