The correct option is
C 12If α+β=5π4
Taking both side ′cot′ and we get
cot(α+β)=cot5π4
cotαcotβ−1cotβ+cosα=cot(π+π4)
∴cot(α+β)=cotαcotβ−1cotβ+cotα
⇒cotαcotβ−1cotβ+cotα=cotπ4 ∴cot(π+θ)=cotθ
⇒cotαcotβ−1cotβ+cotα=1 ∴cotπ4=1
⇒cotαcotβ−1=cotβ+cotα
on adding both side(cotαcotβ+1)
⇒cotαcotβ−1+cotαcotβ+1=cotβ+cotα+cotαcotβ+1
⇒2cotαcotβ=cotβ+cotαcotβ+cotα+1
⇒2cotαcotβ=cotβ(+cotα)+1(1+cotα)
⇒2cotαcotβ=(1+cotα)(1+cotβ)
⇒(1+cotα)(1+cotβ)=2cotαcotβ
⇒(1+cotα)(1+cotβ)cotαcotβ)=2
On reciprocal that
⇒cotαcotβ(1+cotα)(1+cotβ)=12
Hence, this is the answer.