If α+β+γ=2π, then the system of equations x+(cosγ)y+(cosβ)z=0 (cosγ)x+y+(cosα)z=0 (cosβ)x+(cosα)y+z=0 has
A
a unique solution
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
no solution
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
infinitely many solutions
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
exactly two solutions
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is C infinitely many solutions Δ=∣∣
∣
∣∣1cosγcosβcosγ1cosαcosβcosα1∣∣
∣
∣∣ =(1−cos2α)−cosγ(cosγ−cosαcosβ)+cosβ(cosαcosγ−cosβ) =1−(cos2α+cos2β+cos2γ)+2cosαcosβcosγ
As α+β+γ=2π ⇒α+β=2π−γ ⇒cos(α+β)=cos(2π−γ) ⇒cosαcosβ−sinαsinβ=cosγ ⇒cosαcosβ−cosγ=sinαsinβ
Squaring both the sides ⇒(cosαcosβ−cosγ)2=(sinαsinβ)2 ⇒cos2αcos2β+cos2γ−2cosαcosβcosγ=(1−cos2α)(1−cos2β) ⇒cos2αcos2β+cos2γ−2cosαcosβcosγ=1−cos2α−cos2β+cos2αcos2β ⇒1−(cos2α+cos2β+cos2γ)+2cosαcosβcosγ=0