If α,β,γ and a,b,c are the complex numbers such that αa+βb+γc=1+i and aα+bβ+cγ=0 such that α2a2+β2b2+γ2c2=p+iq where p,q∈R then the value of p+q is
Open in App
Solution
We have, αa+βb+γc=1+i Squaring both side, we get (αa+βb+γc)2=(1+i)2 ⇒α2a2+β2b2+γ2c2+2αa⋅βb+2βb⋅γc+2γc⋅αa=2i ⇒α2a2+β2b2+γ2c2+2αaβbγc(aα+bβ+cγ)=2i ⇒α2a2+β2b2+γ2c2=2i=0+2i Now, p+qi=0+2i ⇒p=0,q=2 So, p+q=0+2=2