If α,β,γ are acute angles and cosθ=sinβsinα,cosϕ=sinγsinα and cos(θ−ϕ)−sinβsinγ=0, then tan2α−tan2β−tan2γ is equal to
cosθ=sinβsinα ...(1)
cosϕ=sinγsinα ...(2)
cos(θ−ϕ)=sinβsinγ⇒cosθcosϕ−sinθsinϕ=sinβsinγ⇒sinθsinϕ=cosθcosϕ−sinβsinγ⇒sin2θsin2ϕ=(cosθcosϕ−sinβsinγ)2
From (1) and (2)
(1−cos2θ)(1−cos2ϕ)=(sinβsinαsinγsinα−sinβsinγ)2⇒(1−sin2βsin2α)(1−sin2γsin2α)=sin2βsin2γ(1−sin2α)2⇒(sin2α−sin2β)(sin2α−sin2γ)=sin2βsin2γ(1+sin4α−2sin2α)⇒sin4α−sin2αsin2γ−sin2αsin2β+sin2βsin2γ=sin2βsin2γ+sin4αsin2βsin2γ−2sin2αsin2βsin2γ⇒sin4α(1−sin2βsin2γ)−sin2α(sin2β+sin2γ−2sin2βsin2γ)=0
⇒sin2α=sin2β+sin2γ−2sin2βsin2γ1−sin2βsin2γ ...(3)
⇒cos2α=1−sin2β+sin2γ−2sin2βsin2γ1−sin2βsin2γ=1−sin2β−sin2γ+sin2βsin2γ1−sin2βsin2γ ...(4)
From (3) and (4)
tan2α=sin2β+sin2γ−2sin2βsin2γ1−sin2β−sin2γ+sin2βsin2γ=sin2βcos2γ+sin2γcos2βcos2βcos2γ
Now, tan2α−tan2β−tan2γ=0
Hence, option 'B' is correct.