We have,
α,β,γ are in A.P.
So,
2β=α+γ ……… (1)
R.H.S
=sinα−sinγcosγ−cosα
=2cos(α+γ2)sin(α−γ2)2sin(γ+α2)sin(α−γ2)
=cos(α+γ2)sin(α+γ2)
=cotβ
Hence, proved.
If α, β and γ are in A.P., sinα−sinγcosγ−cosα equals to
If cos(α−β)+cos(β−γ)+cos(γ−α)=−32, Provethat cosα+cosβ+cosγ=sinα+sinβ+sinγ=0