△ABC=△ABD+△ADC
12bcsinA=12cαsinA2+12bαsinA2
Divide by αbcsin(A/2)
1αcosA2=12(1b+1c)
or α=2bcb+ccosA2
Write similar expressions and add.
Lengths of medians:
If D be the mid-point, then we know that
b2+c2=2(BD2+AD2)=2(a24+AD2)
2b2+2c2−a24=AD2
or AD2=b2+c2+2bccosA4
∴=12√b2+c2+2bccosAetc.
similar expressions for medians BE and CF.