If α,β,γ are the roots of ax3+bx2+cx+d=0 and ∣∣
∣
∣∣αβγβγαγαβ∣∣
∣
∣∣=0,α≠β≠γ, then find the equation whose roots are α+β−γ,γ+α−β,β+γ−α
A
ay3−2by2−4cy−8d=0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
ax3−2bx2+4cx+8d=0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
ax3−2bx2+4cx−8d=0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
ay3−2by2+4cy−8d=0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is Day3−2by2+4cy−8d=0 Given α,β,γ are the roots of ax3+bx2+cx+d=0 and ∣∣
∣
∣∣αβγβγαγαβ∣∣
∣
∣∣=0,α≠β≠γ ⇒(α+β+γ)∣∣
∣∣111βγαγαβ∣∣
∣∣=0 ⇒(α+β+γ)(αβ+βγ+γα−α2−β2−γ2)=0 ⇒−12(α+β+γ)((α−β)2+(β−γ)2+(γ−α)2)=0 ∴α+β+γ=0 as α≠β≠γ y=α+β−γ=−2γ ⇒γ=−y2 ∴ Equation whose roots are α+β−γ,γ+α−β,β+γ−α is a(−y2)3+b(−y2)2+c(−y2)+d=0 ay3−2by2+4cy−8d=0 Hence, options D.