α,β and γ are roots of equation
x3+7x+7=0
In cubic equation,
ax3+bx2+cx+d=0
Sum of roots=−ba
Product of roots=−da
And, sum of product of roots ca
So, here α+β+γ=−ba=0
α+β+γ=0→(i)
αβγ=−da=−7→(ii)αβ+βγ+γα=ca=7→(iii)
1α+1β+1γ=αβ+βγ+γααβγ
1α+1β+1γ=7−7=−1
Squaring both sides
1α2+1β2+1γ2+2αβ+2βγ+2γα=11α2+1β2+1γ2+2(α+β+γ)αβγ=11α2+1β2+1γ2=1
Squaring both sides
1α4+1β4+1γ4+2(α2+β2+γ2)α2β2γ2=11α4+1β4+1γ4=1−2[(α2+β2+γ2)2−2(αβ+βγ+γα)]α2+β2+γ21α4+1β4+1γ4=1−2[2(7)](−7)2=1+471α4+1β4+1γ4=117