If α, β, γ are the roots of the equation x3+ax2+bx+c=0 then (1+α2)(1+β2)(1+γ2)=
If α,β,γ are roots equation x3+ax2+bx+c=0, then α−1+β−1+γ−1=
α, β are the roots of ax2+bx+c=0 and γ, δ are the roots of px2+qx+r=0 and D1, D2 be the respective discriminants of these equations. If α,β,γ, and δ are in A.P. then D1:D2=(where α,β,γ δ,ϵR & a,b,c,p,q,r ϵR)