If α,β and γ are the roots of x3-2x+1=0 then the value of ∑1α+β-γ is
-12
-1
0
12
Explanation for the correct option:
Step 1. Find the value of ∑1α+β-γ:
Given, α,β and γ are the roots of x3-2x+1=0
x3–x–x+1=0
⇒x(x2–1)–(x–1)=0
⇒ x=1,x2+x–1=0
⇒α=1,β=-1+52,γ=-1-52
Step 2. Find the value of ∑α,∑αβ,αβγ:
∑α=α+β+γ=1+-1+52+-1-52=0
∑αβ=αβ+βγ+γα=1×-1+52+-1+52×-1-52+-1-52×1=-82=-4
αβγ=1×-1+52×-1-52=-42=-2
Step 3 . Put the values of ∑α,∑αβ,αβγ in ∑1α+β-γ, we get
∴∑1α+β–γ=∑1-γ–γ=∑1-2γ=-121α+1β+1γ=-12αβ+βγ+γααβγ=-12×∑αβαβγ=-12×-4-2=-1
Hence, Option ‘B’ is Correct.