If α,β,γ are the roots of x3+px2+qx+r=0, then find the value of
(α−1βγ)(β –1γα)(γ –1αβ)
−(r+1)3r2
Given α,β,γ are the roots of the cubic polynomial x3+px2+qx+r=0
Using the relation between the roots and coefficients, we get;
αβγ=−r
⇒(α−1βγ)(β –1γα)(γ –1αβ)=(αβγ−1βγ)(αβγ−1αγ)(αβγ−1βα)=(αβγ−1)3(αβγ)2=−(r+1)3r2