wiz-icon
MyQuestionIcon
MyQuestionIcon
3
You visited us 3 times! Enjoying our articles? Unlock Full Access!
Question

If α,β,γ be the three angles given by cosα=ab+c,cosβ=bc+a and cosγ=ca+b where a,b,c are the sides of a ABC, then tanα2tanβ2tanγ2 is equal to

A
cotA2cotB2cotC2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
cscA2cscB2cscC2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
tanA2tanB2tanC2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is D tanA2tanB2tanC2
Given

cosα=ab+c

1tan2α21+tan2α2=ab+c.......................... (cos2θ=1tan2θ1+tan2θ)

(b+c)(b+c)tan2α2=a+atan2α2

(b+c)a=atan2α2+(b+c)tan2α2

(b+ca)=(a+b+c)tan2α2

tan2α2=b+caa+b+c

tan2α2=2s2a2s.................. (s=a+b+c2)

tan2α2=sas(1)

Similarly, tan2β2=sbs(2)

tan2γ2=scs(3)

From (1),(2),(3)

tan2α2tan2β2tan2γ2=(sas)(sbs)(scs)

Multiplying and Diving by s

s(sa)(sb)(sc)s4

Δ2s4(4)

(Δ=s(sa)(sb)(sc))

Considering tanA2tanB2tanC2

tanA2tanB2tanC2=((sb)(sc)s(sa))((sa)(sc)s(sb))((sa)(sb)s(sc))

tanA2tanB2tanC2=((sa)2(sb)2(sc)2s3(sa)(sb)(sc))

tanA2tanB2tanC2=((sa)(sb)(sc)s3)

Multiplying and Diving by s

tanA2tanB2tanC2=(s(sa)(sb)(sc)s4)

Δ2s4(5)

(Δ=s(sa)(sb)(sc))

From (5),(6)

tan2α2tan2β2tan2γ2=tanA2tanB2tanC2



flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon