α,β,γ,δ in A.P
Let common ratio is r, such that
β=α+r,γ=α+2r,δ=α+3r
A: α+γ−δ=α+α+2r−α−3r=α−rcos(α+γ−δ)=cos(α−r)≠cosβ
B: α+δ−γ=α+α+3r−α−2r=α+rcos(α+δ−γ)=cos(α+r)=cosβ
C: 2γ−δ=2α+4r−α−3r=α+rcos(2γ−δ)=cos(α+r)=cosβ
D: α+γ2=α+α+2r2=α+rcos(α+γ2)=cosα+α+2r2=cos(α+r)=cosβ
Hence, option 'B', 'C' and 'D' are correct.