Given equation, x4+qx2+rx+s=0 which has the roots α,β,γ,δ
Therefore,
∑α=0,∑αβ=q,∑αβγ=−r,αβγδ=s
Now, β+γ+δ+1βγδ=(α+β+γ+δ)+ααβγδ−α=(1−ss)α
Therefore, roots of the required equation are (1−ss)α,(1−ss)β,(1−ss)γ,(1−ss)δ,c
Or Roots of the required equation are λα,λβ,λγ,λδ,c where λ=1−ssFor the required equation,
S1=λα+λβ+λγ+λδ+c=λ(α+β+γ+δ+c)=c
S2=λ2∑αβ+λ(∑α)c=λ2q
S3=λ3∑αβγ+λ2(∑αβ)c=−λ3r+λ2rc
S4=λ4αβγδ+λ3(∑αβγ)c=λ4s−λ3rc
S5=λ4αβγδc=λ4sc
Required equation is x5–S1x4+S2x3−S3x2+S4x−S5=0
Or x5−cx4+λ2qx3−(−λ3r+λ2rc)x2+(λ4s−λ3rc)x−λ4sc=0
Or s3x5−s3cx4+(1−s)2sqx3+(1−s)2(1−s−sc)rx2+(1−s)3(1−s−rc)x−(1−s)3c=0