If α.β,γ,δ are the smallest positive angles in ascending order of magnitude which have their sines equal to positive quantity k, then the value of 4 sin (α2)+3 sin (β2)+2 sin (γ2)+sin (δ2) is not equal to
2√1−k
2√k
2k
Given α<β<γ<δ also sinα=sinβ=sinγ=sinδ=k and α,β,γ,δ are the smallest positive angles.
∴β=π−α.γ=2π+α,δ=3π−α
Substituting the values in given expression
We get 2(sinα2+cosα2)=2√1+sinα=2√1+k