If α,β,γ,δ be four angles of a cyclic quadrilateral taken in clockwise direction then the value of (2+∑cosαcosβ) will be :
A
sin2α+sin2β
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
cos2γ+cos2δ
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
sin2α+sin2δ
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
cos2β+cos2γ
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Csin2α+sin2δ We know that if ABCD be a cyclic quadrilateral then α+γ=π and β+δ=π or cosα=cos(π−γ)=cosγ ∴cosα+cosγ=0 ...(1) and cosβ+cosδ=0 ....(2) ∴cosα+cosβ+cosγ+cosδ=0 Square cos2α+cos2β+cos2γ+cos2δ+2∑cosαcosβ=0 or 2(cos2α+cos2δ)+2∑cosαcosβ=0 by (1 , 2) (1−sin2α)+(1−sin2δ)+∑cosαcosβ=0 ∴2+∑cosαcosβ=sin2α+sin2δ⇒(c)