If α,β,γ,δ∈R satisfy (α+1)2+(β+1)2+(γ+1)2+(δ+1)2α+β+γ+δ=4. If the equation a0x4+a1x3+a2x2+a3x+a4=0 has the roots (α+1β−1),(β+1γ−1),(γ+1δ−1),(δ+1α−1), then the value of a2a0 is
Open in App
Solution
(α−1)2+(β−1)2+(γ−1)2+(δ−1)2=0 α=β=γ=δ=1 So, all the roots are (1+1-1)=1 So, the equation is (x−1)4=0 x4−4x3+6x2−4x+1=0 a2a0=61=6