If α, β γ, ϵ(0,π2), then sin(α+β+γ)sin α+sin β+sin γ is
< 1
We have sin α+sin β+sin γ−sin(α+β+γ)
=sin α+sin β+sin γ−sin α cos β cos γ
−cos α sin β cos γ−cos α cos β sin γ+sin α sin β sin γ
=sin α(1−cos β cos γ)+sin β(1−cos α cos γ)
+sin γ(1−cos α cos β)+sin α sin β sin γ > 0
∴sin α+sin β+sin γ>sin(α+β+γ)
⇒sin(α+β+γ)sin α+sin β+sin γ < 1.