wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If α+βγ=π, show that sin2α+sin2βsin2γ=2sinαsinβcosγ.

Open in App
Solution

L.H.S. =sin2α+sin2βsin2γ
=sin2α+sin(β+γ)sin(βγ)
=sin2α+sin(β+γ)sin(πα)
[α+βγ=π gives βγ=πα]
=sin2α+sin(β+γ)sinα
=sinα[sinα+sin(β+γ)]
sinα[sin(βγ)+sin(β+γ)]
[sinα=sin{π(βγ)}=sin(βγ)]
=sinα2sinβcosγ=2sinαsinβcosγ.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Solving Trigonometric Equations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon