If α+β−γ = π, then sin2α+sin2β−sin2γ is equal to
2sinαsinβcosγ.
It is given that α + β - γ = π
To find : sin2α + sin2β - sin2γ
As, we have done earlier problems we should reduce second power of sine function to power 1 using formula
cos2A = 1 - 2 sin2A
or
sin2β - sin2γ can be expanded using identity a2 - b2 = (a + b)(a - b)
sin2α + sin2β - sin2γ
= sin2α + (sinβ + sinγ) (sinβ - sinγ)
= sin2α+{2sin(β+γ)2.cos(β−γ)2}{2cos(β+γ)2.sin(β−γ)2}
= sin2α+{2sin(β+γ)2.cos(β+γ)2.2sin(β−γ)2.cos(β−γ)2}
= sin2α+{sin2(β+γ)2.sin2(β−γ)2} {sin 2A = 2 sinA cosA}
= sin2α + sin (β+γ).sin (β−γ)
{β−γ=π−α}
= sin2α + sin (β+γ).sin (π−α)
= sin2α + sin (β+γ) sin α
= sin α [sin α + sin (β+γ)]
= sin α [2sin(α+β+γ)2.cos(α−β−γ)2]
∵{α+β=π+γα−γ=π−β}
= sin α [2sin(π+γ+γ)2.cos(π−β−β)2]
= sinα[2sin(π2+γ).cos(π2+β)]
= sin α [2 cosγ.sinβ]
= 2 sin α sin β cosγ.
Hence the correct answer is Option A.