wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If α+βγ = π, then sin2α+sin2βsin2γ is equal to


A

2cosαcosβcosγ.

No worries! We‘ve got your back. Try BYJU‘S free classes today!
B

2sinαsinβsinγ

No worries! We‘ve got your back. Try BYJU‘S free classes today!
C

2sinαsinβcosγ.

Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D

2cosαcosβsinγ

No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is C

2sinαsinβcosγ.


It is given that α + β - γ = π
To find : sin2α + sin2β - sin2γ

As, we have done earlier problems we should reduce second power of sine function to power 1 using formula

cos2A = 1 - 2 sin2A

or

sin2β - sin2γ can be expanded using identity a2 - b2 = (a + b)(a - b)

sin2α + sin2β - sin2γ

= sin2α + (sinβ + sinγ) (sinβ - sinγ)

= sin2α+{2sin(β+γ)2.cos(βγ)2}{2cos(β+γ)2.sin(βγ)2}

= sin2α+{2sin(β+γ)2.cos(β+γ)2.2sin(βγ)2.cos(βγ)2}

= sin2α+{sin2(β+γ)2.sin2(βγ)2} {sin 2A = 2 sinA cosA}

= sin2α + sin (β+γ).sin (βγ)
{βγ=πα}

= sin2α + sin (β+γ).sin (πα)

= sin2α + sin (β+γ) sin α

= sin α [sin α + sin (β+γ)]

= sin α [2sin(α+β+γ)2.cos(αβγ)2]
{α+β=π+γαγ=πβ}

= sin α [2sin(π+γ+γ)2.cos(πββ)2]

= sinα[2sin(π2+γ).cos(π2+β)]

= sin α [2 cosγ.sinβ]

= 2 sin α sin β cosγ.
Hence the correct answer is Option A.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Alkynes - Chemical Properties
Watch in App
Join BYJU'S Learning Program
CrossIcon