If α+β−γ=π then sin2α+sin2β−sin2γ is equal to
2 sin α sin β cos γ
We have, α+β−γ=π
Now,sin2α+sin2β−sin2γ=sin2α+sin(β−γ)sin(β+γ)=sin2α+sin(π−α)sin(β+γ)=sin2α+sinαsin(β+γ)=sinα[sinα+sin(β−γ)]=sinα[sin{π−(β−γ)}+sin(β+γ)]=sinα[sin(β−γ)+sin(β+γ)]=sinα2sinβcosγ=2sinαsinβcosγ