If α+β+γ=π, then sin2α+sin2β-sin2γ is equal to
2sinαsinβcosγ
2cosαcosβcosγ
2sinαsinβsinγ
None of these
Find the value of sin2α+sin2β-sin2γ:
Given, α+β+γ=π
Now,
sin2α+sin2β–sin2γ=(1–cos2α)2+(1–cos2β)2–sin2γ=12+12–12(cos2α+cos2β)–(1–cos2γ)=1–122cos(2α+2β)2cos(2α–2β)2–1+cos2γ=–cos(α+β)cos(α–β)+cos2γ=-cos(π–γ)cos(α–β)+cos2γ=cosγcos(α–β)+cos2γ=cosγ[cos(α–β)+cosγ]=cosγ[cos(α–β)–cos(α–β)]=cosγ(2sinαsinβ)=2sinαsinβcosγ
Hence, Option ‘A’ is Correct.
If cos−1α+cos−1β
+cos−1γ=3π, then
α(β+γ)+β(γ+α)+γ(α+β) equals
If α+β−γ = π, then sin2α+sin2β−sin2γ is equal to