The given pair of st lines passes through origin intersect equation of line side AB:lx+my=1 or y=1n(1−lx) Putting this y in equation of Pair of st lines will give coordinates of A and B.
⇒ax2+2nx[1−lxm]+b[1−lxm]2 so,
am2x2+2mnx(1−ln)+b(1−ln)2 so,
x2[am2−2mnl+bl2]+x[2mn−2l]+b So
Solution are x1 and x2⇒x1+x2=2(lb−nm)am2−2mnl+bl2 .....(1)
A lies on AB A lies on AB
lx1+my1−1 lx2+my2−1
Adding l(x1+x2)+m(y1+y2)=2
Using equation (1)
2l(lb−hm)am2−2mnl+bl2+m(y1+y2)=2
m(y1+y2)=(2am2−4mnl+2bl2−2bl2+2lhm)(am2−2mhl+bl2)
d((y1+y2))=(2am−2mhl)am2−2mnl+bl2
(y1+y22)=2(am−hl)am2−2mhl+bl2
G=[x1+x2+03,y1+y2+o3]≤α,β
α=x1+x23 β=y1+y23
⇒α=2(lb−hm)am2−2hml+bl2 β=2(am−hl)3[am2−2mhl+bl2]
α(lb−hm)=βam−hl=23[am2−2mhl+b2]
Hence proved.