wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If α,β0, f(n)=αn+βn and
∣ ∣ ∣31+f(1)1+f(2)1+f(1)1+f(2)1+f(3)1+f(2)1+f(3)1+f(4)∣ ∣ ∣=K(1α)2(1β)2(αβ)2, then K is equal to

A
αβ
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
1αβ
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
1
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is C 1
Given, f(n)=αn+βn
∣ ∣ ∣31+f(1)1+f(2)1+f(1)1+f(2)1+f(3)1+f(2)1+f(3)1+f(4)∣ ∣ ∣

=∣ ∣ ∣31+α+β1+α2+β21+α+β1+α2+β21+α3+β31+α2+β21+α3+β31+α4+β4∣ ∣ ∣

=∣ ∣ ∣1+1+11+α+β1+α2+β21+α+β1+α2+β21+α3+β31+α2+β21+α3+β31+α4+β4∣ ∣ ∣

=∣ ∣1111αβ1α2β2∣ ∣∣ ∣1111αβ1α2β2∣ ∣

=∣ ∣1111αβ1α2β2∣ ∣2

C2+C1C2,C3+C1C3

=∣ ∣10011α1β11α21β2∣ ∣2

=(1α)2(1β)2111+α1+β2
=(1α)2(1β)2(1+β1α)2
=(1α)2(1β)2(αβ)2
k=1

flag
Suggest Corrections
thumbs-up
3
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Properties
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon