The correct option is C 1
Plan, Use the properly that, two determinants can be multiplied column - to - row or row - to - column, to write the given determinant as the product of two determinants and then expand.
Given, f(n)=αn+βn,f(1)=α+β,f(2)=α2+β2,f(3)=α3+β3,f(4)=α4+β4
Let Δ=∣∣
∣
∣∣31+f(1)1+f(2)1+f(1)1+f(2)1+f(3)1+f(2)1+f(3)1+f(4)∣∣
∣
∣∣
⇒Δ=∣∣
∣
∣∣31+α+β1+α2+β21+α+β1+α2+β21+α3+β31+α2+β21+α3+β31+α4+β4∣∣
∣
∣∣
=∣∣
∣
∣∣1.1+1.1+1.11.1+1.α+1.β1.1+1.α2+1.β21.1+1.α+1.β1.1+α.α+β.β1.1+1.α.α2+β.β21.1+1.α2+1.β21.1+α.α2+β.β21.1+α2.α2+β2.β2∣∣
∣
∣∣
=∣∣
∣∣1111αβ1α2β2∣∣
∣∣ ∣∣
∣∣1111αβ1α2β2∣∣
∣∣=∣∣
∣∣1111αβ1α2β2∣∣
∣∣2
On expanding, we get Δ=(1−α)2(1−β)2(α−β)2
But given, Δ=K(1−α)2(1−β)2(α−β)2
Hence, K(1−α)2(1−β)2(α−β)2=(1−α)2(1−β)2(α−β)2
∴K=1