wiz-icon
MyQuestionIcon
MyQuestionIcon
2
You visited us 2 times! Enjoying our articles? Unlock Full Access!
Question

If α,β0 and f(n)=αn+βn and ∣ ∣ ∣31+f(1)1+f(2)1+f(1)1+f(2)1+f(3)1+f(2)1+f(3)1+f(4)∣ ∣ ∣=K(1α)2(1β)2(αβ)2, then K is equal to

A
αβ
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
1αβ
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
1
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is C 1
Plan, Use the properly that, two determinants can be multiplied column - to - row or row - to - column, to write the given determinant as the product of two determinants and then expand.
Given, f(n)=αn+βn,f(1)=α+β,f(2)=α2+β2,f(3)=α3+β3,f(4)=α4+β4
Let Δ=∣ ∣ ∣31+f(1)1+f(2)1+f(1)1+f(2)1+f(3)1+f(2)1+f(3)1+f(4)∣ ∣ ∣
Δ=∣ ∣ ∣31+α+β1+α2+β21+α+β1+α2+β21+α3+β31+α2+β21+α3+β31+α4+β4∣ ∣ ∣
=∣ ∣ ∣1.1+1.1+1.11.1+1.α+1.β1.1+1.α2+1.β21.1+1.α+1.β1.1+α.α+β.β1.1+1.α.α2+β.β21.1+1.α2+1.β21.1+α.α2+β.β21.1+α2.α2+β2.β2∣ ∣ ∣
=∣ ∣1111αβ1α2β2∣ ∣ ∣ ∣1111αβ1α2β2∣ ∣=∣ ∣1111αβ1α2β2∣ ∣2
On expanding, we get Δ=(1α)2(1β)2(αβ)2
But given, Δ=K(1α)2(1β)2(αβ)2
Hence, K(1α)2(1β)2(αβ)2=(1α)2(1β)2(αβ)2
K=1

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Properties
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon