wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If α,β0, and f(n)=αn+βn and ∣ ∣ ∣31+f(1)1+f(2)1+f(1)1+f(2)1+f(3)1+f(2)1+f(3)1+f(4)∣ ∣ ∣=K(1α)2(1β)2(αβ)2, then K is equal to?

A
1
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
αβ
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
1αβ
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A 1
∣ ∣ ∣31+f(1)1+f(2)1+f(1)1+f(2)1+f(3)1+f(2)1+f(3)1+f(4)∣ ∣ ∣

α+β=f(1)α2+β2=f(2)α3+β3=f(3)αn+βn=f(n)
=∣ ∣ ∣31+α+β1+α2+β21+α+β1+α2+β21+α3+β31+α2+β21+α3+β31+α4+β4∣ ∣ ∣=∣ ∣ ∣1111αβ1α2β2∣ ∣ ∣×∣ ∣ ∣1111αβ1α2β2∣ ∣ ∣
Applying C2C2C1 and C3C3C1
=∣ ∣ ∣1001α1β11α21β21∣ ∣ ∣=(α1)2(β1)2(βα)2=(1α)2(1β)2(αβ)2K=1

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Introduction to Limits
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon