If α+β=π2 and β+γ=α, then the value of tanα is
tanβ+tanγ
2(tanβ+tanγ)
tanβ+2tanγ
2tanβ+tanγ
Explanation for the correct option:
Step 1. Find the value of tanα:
Given, α+β=π2 and β+γ=α
⇒ γ=α–β
Step 2. Take “tan” on both sides, we get
tanγ=tan(α–β)=tanα–tanβ1+tanαtanβ=tanα–tanβ1+tanαtanπ2–α=tanα–tanβ1+tanαcotα=tanα–tanβ1+1
⇒2tanγ=tanα–tanβ
∴tanα=tanβ+2tanγ
Hence, Option ‘C’ is Correct.