If α,β∈R are such that 1–2i(i2=–1) is a root of z2+αz+β=0, then (α–β) is equal to:
7
-3
3
-7
Find the value of (α–β):
Given, 1-2i is a root of z2+αz+β=0.
⇒ (1-2i)2+α(1-2i)+β=0
⇒ 1-4-4i+α-2iα+β=0
⇒ (α+β-3)-i(4+2α)=0
⇒ α+β-3=0,4+2α=0
⇒ α+β-3=0,α=-42
⇒ α+β=3,α=-2
⇒ -2+β=3,α=-2
⇒ β=3+2,α=-2
⇒ α=-2,β=5
∴α-β=-7
Hence, Option ‘D’ is Correct.