wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If α, β roots of x2+px+1=0 and γ, δ are the roots of x2+qx+1=0 then prove that (αγ)(βγ)(α+δ)(β+δ)=q2p2

Open in App
Solution

x2+px+1=0(1) roots α & β
α=β=p and αβ=1
x2+qx+1=0(2) roots γ and δ
(αγ)(βγ)(α+δ)(β+δ)
=(αββγαγγ2)(αβ+βδ+αδ+δ2)
=[1γ(α+β)+γ2][1+δ(α+β)+δ2]
=[1+pγ+γ2][1+pδ+δ2]
=1+pγ+γ2+pδ+p2γδ+γ2pδ+δ2+δ2pγ+(γδ)2
=1+p(γ+δ)+γ2+p2(1)+γp+δ2+δp+1
=1pq+p2+p(γ+δ)+δ2+1+γ2
=2pqpq+p2+(γ+δ)22γδ
=22pq++p2++q22
=(pq)2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Some Functions and Their Graphs
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon