The correct option is A a2+ac+b2a2+b2.
acos2θ+bsin2θ=c
⇒a1−tan2θ1+tan2θ+b2tanθ1+tan2θ=c
⇒(c+a)tan2θ−(2b)tanθ+(c−a)
Now if α,β are the roots of this equation then,
tanα+tanβ=2bc+a,tanα.tanβ=c−ac+a (i)
∴cos2α+cos2β=11+tan2α+11+tan2β
=tan2α+tan2β+21+tan2α+tan2β+tan2α.tanβ
=(tanα+tanβ)2−2tanα.tanβ+21+(tanα+tanβ)2−2tanα.tanβ+tan2α.tan2β
=a2+ac+b2a2+b2 using (i)