If α,βare the roots of the equationx2−x−1=0andAn=αn+βnthenAn+2+An−2=−−
An−1+An−2=αn+2+βn+2+αn−4+βn−4=αn−2((a2+1)−2a2)+βn−2((β2+1)−2β2) (∵α2=α+1)=αn−2((a+2)2−2a2)+βn−2((β+2)2−2β2)=3(αn+βn)=3An