If α=cot−1(−34), then the value of sin(α2)+cos(α2) is equal to
Let y2=(sinα2+cosα2)2
⇒y2=1+sinα
⇒y2=1+45=95
⇒y=3√5
√2sin(12cot−1(−34)+cot−11)
=√2sin(π4+α2)
=cosα2+sinα2
√2sin(π−tan−1(1)−12tan−143)
=√2sin(π−π4−12(π−α))
=√2sin(π4+α2)
=cosα2+sinα2