If α=π13, then the value of Π6r=1cosrα is:
Let A=Π6r=1cos(rα). Then
A=cosα.cos2α.cos3α.cos4α.cos5α.cos6α.....(i)
Where α=π13, then 13α=π, and
α=π−12α,5α=π−8α
⇒cosα=−cos12α,cos(5α)=−cos8α
Now (1) ⇒A=cos12α.cos2α.cos3α.cos4α.cos8α.cos6α
⇒A=(cos2α.cos4α.cos8α)(cos3α.cos6α.cos12α)
=(cosθ.cos2θ.cos4θ)(cosϕ.cos2ϕ.cos4ϕ), where θ=2α,ϕ=3α
=sin(23θ)23sinθ).sin(23ϕ)23sinϕ=164.sin(16α).sin(24α)sin(2α).sin(3/alpha)....(ii)
But sin(6α)=sin(π+3α+=−sin3α,sin(24α)=sin(2π−2α)=−2α
⇒sin(16α)sin(24α)=(sin2α).(sin3α) putting in (ii), we get A=164.
Option A