If α=1∫0(e9x+3tan−1)(12+9x21+x2) dx, where tan−1x only principal values, then the value of (loge|1+α|−3π4) is
9
let t=9x+3tan−1x
dt=9+31+x2
dt=12+9x21+x2
α=9+3π4∫0et dx
α=[et]9+3π40 =[e9+3π4−1]
loge|1+α|−3π4=loge∣∣∣1+e9+3π4−1∣∣∣−3π4
=9+3π4−3π4=9