If αϵ(0,π2), then the expression √x2+x+tan2x√x2+x is always greater than or equal to
Applying A.M≥G.M we get 12[√x2+x+tan2α√x2+x]≥√√x2+x.tan2α√x2+x Or 12[√x2+x+tan2α√x2+x]≥|tanα|. Or [√x2+x+tan2α√x2+x]≥2|tanα|.