If α is a complex number satisfying the equation α2+α+1=0, then α31 is equal to
α
α2
1
i
Explanation for the correct option:
Step 1. Find the value of α31:
As we know,
ω3=1 (cube root of unity)
⇒ ω3-1=0
⇒(ω-1)(ω2+ω+1)=0
⇒ω=1,(ω2+ω+1)=0
⇒ (ω2+ω+1)=0
Step 2. α satisfies the equation α2+α+1=0
⇒Roots are ω,ω2 and ω3=1
∴α31=ω31=ω(ω3)10=ω=α
Hence, Option ‘A’ is Correct.