wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If α is a root of equation (2sinxcosx)(1+cosx)=sin2x, β is a root of equation 3cos2x10cosx+3=0 and γ is a root of equation 1sin2x=cosxsinx; 0α,β,γπ2, then cosα+cosβ+cosγ can be equal to

A
36+22+662
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
3386
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
33+26
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
None of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A 36+22+662
(2sinxcosx)(1+cosx)=sin2x(2sinxcosx)(1+cosx)=1cos2x(1+cosx)(2sinxcosx1+cosx)=0(1+cosx)(2sinx1)=0
cosx=1 or sinx=12
Since, 0απ2
sinα=12, cosα=32 ...(1)

3cos2x10cosx+3=0(3cosx1)(cosx3)=0cosx=13 (cosx[1,1])cosβ=13, sinβ=223 ...(2)

1sin2x=cosxsinx
sin2x+cos2x2sinxcosx=cosxsinx
(cosxsinx)2=cosxsinx
(cosxsinx)(cosxsinx1)=0
sinx=cosx or cosxsinx=1
sinγ=cosγ=12 ...(3)
Or,
cosxsinx=1cosx=1+sinx
cosx=1, sinx=0 (0γπ2)
cosγ=1, sinγ=0 ...(4)

cosα+cosβ+cosγ
=32+13+12 (or) 32+13+1
=36+22+662 (or) 33+86


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon