The correct option is C √x2−1
sinα2=√x−12x
sin2α2=x−12x ...... (i)
1−cos2(α2)=x−12x[∵sin2x+cos2x=1]
cos2α2=1−(x−12x)
cos2α2=2x−x+12x
cos2α2=x+12x ...... (ii)
From (i) and (ii), we get
tan2α2=sin2α2cos2α2=x−1x+1
tanα2=√x−1x+1
Using formula, tan2θ=2tanθ1−tan2θ
tanα=2tanα21−tan2α2
∴tanα=2√x−1x+11−[x−1x+1]
tanα=2√x−1x+1x+1−x+1x+1
tanα=2(x+1)2√x−1x+1
tanα=√(x+1)(x−1)
tanα=√x2−1